Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Sensors (Basel) ; 23(10)2023 May 13.
Article in English | MEDLINE | ID: covidwho-20245327

ABSTRACT

Dyspnea is one of the most common symptoms of many respiratory diseases, including COVID-19. Clinical assessment of dyspnea relies mainly on self-reporting, which contains subjective biases and is problematic for frequent inquiries. This study aims to determine if a respiratory score in COVID-19 patients can be assessed using a wearable sensor and if this score can be deduced from a learning model based on physiologically induced dyspnea in healthy subjects. Noninvasive wearable respiratory sensors were employed to retrieve continuous respiratory characteristics with user comfort and convenience. Overnight respiratory waveforms were collected on 12 COVID-19 patients, and a benchmark on 13 healthy subjects with exertion-induced dyspnea was also performed for blind comparison. The learning model was built from the self-reported respiratory features of 32 healthy subjects under exertion and airway blockage. A high similarity between respiratory features in COVID-19 patients and physiologically induced dyspnea in healthy subjects was observed. Learning from our previous dyspnea model of healthy subjects, we deduced that COVID-19 patients have consistently highly correlated respiratory scores in comparison with normal breathing of healthy subjects. We also performed a continuous assessment of the patient's respiratory scores for 12-16 h. This study offers a useful system for the symptomatic evaluation of patients with active or chronic respiratory disorders, especially the patient population that refuses to cooperate or cannot communicate due to deterioration or loss of cognitive functions. The proposed system can help identify dyspneic exacerbation, leading to early intervention and possible outcome improvement. Our approach can be potentially applied to other pulmonary disorders, such as asthma, emphysema, and other types of pneumonia.


Subject(s)
Asthma , COVID-19 , Humans , COVID-19/diagnosis , Physical Exertion , Dyspnea , Benchmarking
2.
Am J Health Promot ; 37(5): 638-645, 2023 06.
Article in English | MEDLINE | ID: covidwho-20243186

ABSTRACT

PURPOSE: The Alabama Department of Public Health (ADPH) sponsored a TikTok contest to improve vaccination rates among young people. This analysis sought to advance understanding of COVID-19 vaccine perceptions among ADPH contestants and TikTok commenters. APPROACH: This exploratory content analysis characterized sentiment and imagery in the TikTok videos and comments. Videos were coded by two reviewers and engagement metrics were collected for each video. SETTING: Publicly available TikTok videos entered into ADPH's contest with the hashtags #getvaccinatedAL and #ADPH between July 16 - August 6, 2021. PARTICIPANTS: ADPH contestants (n = 44) and TikTok comments (n = 502). METHOD: A content analysis was conducted; videos were coded by two reviewers and engagement metrics was collected for each video (e.g., reason for vaccination, content, type of vaccination received). Video comments were analyzed using VADER, a lexicon and rule-based sentiment analysis tool). RESULTS: Of 44 videos tagged with #getvaccinatedAL and #ADPH, 37 were related to the contest. Of the 37 videos, most cited family/friends and civic duty as their reason to get the COVID-19 vaccine. Videos were shared an average of 9 times and viewed 977 times. 70% of videos had comments, ranging from 0-61 (mean 44). Words used most in positively coded comments included, "beautiful," "smiling face emoji with 3 hearts," "masks," and "good.;" whereas words used most in negatively coded comments included "baby," "me," "chips," and "cold." CONCLUSION: Understanding COVID-19 vaccine sentiment expressed on social media platforms like TikTok can be a powerful tool and resource for public health messaging.


Subject(s)
COVID-19 , Social Media , Infant , Humans , Adolescent , COVID-19 Vaccines , COVID-19/prevention & control , Alabama , Benchmarking
3.
J Healthc Eng ; 2023: 9995292, 2023.
Article in English | MEDLINE | ID: covidwho-20240547

ABSTRACT

In conventional healthcare, real-time monitoring of patient records and information mining for timely diagnosis of chronic diseases under certain health conditions is a crucial process. Chronic diseases, if not diagnosed in time, may result in patients' death. In modern medical and healthcare systems, Internet of Things (IoT) driven ecosystems use autonomous sensors to sense and track patients' medical conditions and suggest appropriate actions. In this paper, a novel IoT and machine learning (ML)-based hybrid approach is proposed that considers multiple perspectives for early detection and monitoring of 6 different chronic diseases such as COVID-19, pneumonia, diabetes, heart disease, brain tumor, and Alzheimer's. The results from multiple ML models are compared for accuracy, precision, recall, F1 score, and area under the curve (AUC) as a performance measure. The proposed approach is validated in the cloud-based environment using benchmark and real-world datasets. The statistical analyses on the datasets using ANOVA tests show that the accuracy results of different classifiers are significantly different. This will help the healthcare sector and doctors in the early diagnosis of chronic diseases.


Subject(s)
COVID-19 , Ecosystem , Humans , COVID-19/diagnosis , Area Under Curve , Benchmarking , Machine Learning , COVID-19 Testing
4.
Glob Health Epidemiol Genom ; 2023: 8921220, 2023.
Article in English | MEDLINE | ID: covidwho-20240140

ABSTRACT

The coronavirus disease 2019 (COVID-19) has wreaked havoc globally, resulting in millions of cases and deaths. The objective of this study was to predict mortality in hospitalized COVID-19 patients in Zambia using machine learning (ML) methods based on factors that have been shown to be predictive of mortality and thereby improve pandemic preparedness. This research employed seven powerful ML models that included decision tree (DT), random forest (RF), support vector machines (SVM), logistic regression (LR), Naïve Bayes (NB), gradient boosting (GB), and XGBoost (XGB). These classifiers were trained on 1,433 hospitalized COVID-19 patients from various health facilities in Zambia. The performances achieved by these models were checked using accuracy, recall, F1-Score, area under the receiver operating characteristic curve (ROC_AUC), area under the precision-recall curve (PRC_AUC), and other metrics. The best-performing model was the XGB which had an accuracy of 92.3%, recall of 94.2%, F1-Score of 92.4%, and ROC_AUC of 97.5%. The pairwise Mann-Whitney U-test analysis showed that the second-best model (GB) and the third-best model (RF) did not perform significantly worse than the best model (XGB) and had the following: GB had an accuracy of 91.7%, recall of 94.2%, F1-Score of 91.9%, and ROC_AUC of 97.1%. RF had an accuracy of 90.8%, recall of 93.6%, F1-Score of 91.0%, and ROC_AUC of 96.8%. Other models showed similar results for the same metrics checked. The study successfully derived and validated the selected ML models and predicted mortality effectively with reasonably high performance in the stated metrics. The feature importance analysis found that knowledge of underlying health conditions about patients' hospital length of stay (LOS), white blood cell count, age, and other factors can help healthcare providers offer lifesaving services on time, improve pandemic preparedness, and decongest health facilities in Zambia and other countries with similar settings.


Subject(s)
COVID-19 , Humans , Zambia/epidemiology , Bayes Theorem , Benchmarking , Machine Learning
5.
PLoS One ; 18(5): e0286148, 2023.
Article in English | MEDLINE | ID: covidwho-20236835

ABSTRACT

Amidst the fourth COVID-19 wave in Viet Nam, national lockdowns necessitated the closure of numerous dental schools. To assess DDS (Doctor of Dental Surgery) graduation exams, this study analyzed their 2021 implementation in comparison to onsite exams conducted in 2020 and 2022 at the Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Viet Nam (FOS-UMPH). The final online examination comprises two main sessions: a synchronous online examination using FOS-UMPH e-Learning for theories (consisting of 200 MCQs and 3 written tests with 3 clinical situations needed be solved) and a synchronous online examination using Microsoft Teams for practicum (comprising of 12 online OSCE stations). The final grades were evaluated using the same metrics in face-to-face final examinations in 2022 and 2020. A total of 114, 112 and 95 students were recruited for the first-time exams in 2020, 2021 and 2022, respectively. In order to analyze the reliability, histogram and k-mean clustering were employed. The histograms from 2020, 2021 and 2022 showed a striking similarity. However, fewer students failed in 2021 and 2022 (13% and 12.6%, respectively) compared to 2020 (28%), with clinical problem-solving part grades (belonging to theory session) being notably higher in 2021 and 2022. Intriguingly, the MCQ Score results showed the identical patterns. The courses of orthodontics, dental public health, and pediatrics subjects (in the group of prevention and development dentistry) stood out for their exceptional accuracy across both sessions. After examining data gathered over three years, we identified three distinct clusters: the first comprised of scattered average and low scores, the second characterized by high scores but unstable and scattered and the third cluster boasting consistently high and centered scores. According to our study, online and onsite traditional graduation exam results are relatively equivalent, but additional measures are necessary to standardize the final examination and adapt to the new normal trend in dental education.


Subject(s)
COVID-19 , Humans , Child , COVID-19/diagnosis , COVID-19/epidemiology , Communicable Disease Control , Reproducibility of Results , Benchmarking , Cluster Analysis
6.
Nat Commun ; 14(1): 2834, 2023 05 17.
Article in English | MEDLINE | ID: covidwho-2326063

ABSTRACT

As clinical testing declines, wastewater monitoring can provide crucial surveillance on the emergence of SARS-CoV-2 variant of concerns (VoCs) in communities. In this paper we present QuaID, a novel bioinformatics tool for VoC detection based on quasi-unique mutations. The benefits of QuaID are three-fold: (i) provides up to 3-week earlier VoC detection, (ii) accurate VoC detection (>95% precision on simulated benchmarks), and (iii) leverages all mutational signatures (including insertions & deletions).


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Wastewater , Benchmarking
7.
J Consult Clin Psychol ; 91(5): 267-279, 2023 May.
Article in English | MEDLINE | ID: covidwho-2321956

ABSTRACT

OBJECTIVE: Measurement-based care is designed to track symptom levels during treatment and leverage clinically significant change benchmarks to improve quality and outcomes. Though the Veterans Health Administration promotes monitoring progress within posttraumatic stress disorder (PTSD) clinical teams, actionability of data is diminished by a lack of population-based benchmarks for clinically significant change. We reported the state of repeated measurement within PTSD clinical teams, generated benchmarks, and examined outcomes based on these benchmarks. METHOD: PTSD Checklist for the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition data were culled from the Corporate Data Warehouse from the pre-COVID-19 year for Veterans who received at least eight sessions in 14 weeks (episode of care [EOC] cohort) and those who received sporadic care (modal cohort). We used the Jacobson and Truax (1991) approach to generate clinically significant change benchmarks at clinic, regional, and national levels and calculated the frequency of cases that deteriorated, were unchanged, improved, or probably recovered, using our generated benchmarks and benchmarks from a recent study, for both cohorts. RESULTS: Both the number of repeated measurements and the cases who had multisession care in the Corporate Data Warehouse were very low. Clinically significant change benchmarks were similar across locality levels. The modal cohort had worse outcomes than the EOC cohort. CONCLUSIONS: National benchmarks for clinically significant change could improve the actionability of assessment data for measurement-based care. Benchmarks created using data from Veterans who received multisession care had better outcomes than those receiving sporadic care. Measurement-based care in PTSD clinical teams is hampered by low rates of repeated assessments of outcome. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
COVID-19 , Stress Disorders, Post-Traumatic , Veterans , Humans , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/therapy , Stress Disorders, Post-Traumatic/diagnosis , Benchmarking , Metadata
8.
Microbiol Spectr ; 11(3): e0373122, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2314896

ABSTRACT

Rapid diagnostic tests (RDTs) that detect antigen indicative of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection can help in making quick health care decisions and regularly monitoring groups at risk of infection. With many RDT products entering the market, it is important to rapidly evaluate their relative performance. Comparison of clinical evaluation study results is challenged by protocol design variations and study populations. Laboratory assays were developed to quantify nucleocapsid (N) and spike (S) SARS-CoV-2 antigens. Quantification of the two antigens in nasal eluates confirmed higher abundance of N than S antigen. The median concentration of N antigen was 10 times greater than S per genome equivalent. The N antigen assay was used in combination with quantitative reverse transcription (RT)-PCR to qualify a panel composed of recombinant antigens, inactivated virus, and clinical specimen pools. This benchmarking panel was applied to evaluate the analytical performance of the SD Biosensor Standard Q COVID-19 antigen (Ag) test, Abbott Panbio COVID-19 Ag rapid test, Abbott BinaxNOW COVID-19 Ag test, and the LumiraDx SARS-CoV-2 Ag test. The four tests displayed different sensitivities toward the different panel members, but all performed best with the clinical specimen pool. The concentration for a 90% probability of detection across the four tests ranged from 21 to 102 pg/mL of N antigen in the extracted sample. Benchmarking panels provide a quick way to verify the baseline performance of a diagnostic and enable direct comparisons between diagnostic tests. IMPORTANCE This study reports the results for severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) nucleocapsid (N) and spike (S) antigen quantification assays and their performance against clinical reverse transcription (RT)-PCR results, thus describing an open-access quantification method for two important SARS-CoV-2 protein analytes. Characterized N antigen panels were used to evaluate the limits of detection of four different rapid tests for SARS-CoV-2 against multiple sources of nucleocapsid antigen, demonstrating proof-of-concept materials and methodology to evaluate SARS-CoV-2 rapid antigen detection tests. Quantification of N antigen was used to characterize the relationship between viral count and antigen concentration among clinical samples and panel members of both clinical sample and viral culture origin. This contributes to a deeper understanding of protein antigen and molecular analytes and presents analytical methods complementary to clinical evaluation for characterizing the performance of both laboratory-based and point-of-care rapid diagnostics for SARS-CoV-2.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Indicators and Reagents , Benchmarking , Diagnostic Tests, Routine , COVID-19 Testing
9.
Sensors (Basel) ; 23(7)2023 Mar 30.
Article in English | MEDLINE | ID: covidwho-2298784

ABSTRACT

Online fatigue estimation is, inevitably, in demand as fatigue can impair the health of college students and lower the quality of higher education. Therefore, it is essential to monitor college students' fatigue to diminish its adverse effects on the health and academic performance of college students. However, former studies on student fatigue monitoring are mainly survey-based with offline analysis, instead of using constant fatigue monitoring. Hence, we proposed an explainable student fatigue estimation model based on joint facial representation. This model includes two modules: a spacial-temporal symptom classification module and a data-experience joint status inferring module. The first module tracks a student's face and generates spatial-temporal features using a deep convolutional neural network (CNN) for the relevant drivers of abnormal symptom classification; the second module infers a student's status with symptom classification results with maximum a posteriori (MAP) under the data-experience joint constraints. The model was trained on the benchmark NTHU Driver Drowsiness Detection (NTHU-DDD) dataset and tested on an Online Student Fatigue Monitoring (OSFM) dataset. Our method outperformed the other methods with an accuracy rate of 94.47% under the same training-testing setting. The results were significant for real-time monitoring of students' fatigue states during online classes and could also provide practical strategies for in-person education.


Subject(s)
Academic Performance , Students , Humans , Benchmarking , Surveys and Questionnaires
10.
Nat Commun ; 14(1): 2310, 2023 04 21.
Article in English | MEDLINE | ID: covidwho-2305975

ABSTRACT

Diversity of physical encounters in urban environments is known to spur economic productivity while also fostering social capital. However, mobility restrictions during the pandemic have forced people to reduce urban encounters, raising questions about the social implications of behavioral changes. In this paper, we study how individual income diversity of urban encounters changed during the pandemic, using a large-scale, privacy-enhanced mobility dataset of more than one million anonymized mobile phone users in Boston, Dallas, Los Angeles, and Seattle, across three years spanning before and during the pandemic. We find that the diversity of urban encounters has substantially decreased (by 15% to 30%) during the pandemic and has persisted through late 2021, even though aggregated mobility metrics have recovered to pre-pandemic levels. Counterfactual analyses show that behavioral changes including lower willingness to explore new places further decreased the diversity of encounters in the long term. Our findings provide implications for managing the trade-off between the stringency of COVID-19 policies and the diversity of urban encounters as we move beyond the pandemic.


Subject(s)
COVID-19 , Cell Phone , Humans , COVID-19/epidemiology , Pandemics , Benchmarking , Income
11.
Brief Bioinform ; 24(3)2023 05 19.
Article in English | MEDLINE | ID: covidwho-2292897

ABSTRACT

The advances of single-cell transcriptomic technologies have led to increasing use of single-cell RNA sequencing (scRNA-seq) data in large-scale patient cohort studies. The resulting high-dimensional data can be summarized and incorporated into patient outcome prediction models in several ways; however, there is a pressing need to understand the impact of analytical decisions on such model quality. In this study, we evaluate the impact of analytical choices on model choices, ensemble learning strategies and integrate approaches on patient outcome prediction using five scRNA-seq COVID-19 datasets. First, we examine the difference in performance between using single-view feature space versus multi-view feature space. Next, we survey multiple learning platforms from classical machine learning to modern deep learning methods. Lastly, we compare different integration approaches when combining datasets is necessary. Through benchmarking such analytical combinations, our study highlights the power of ensemble learning, consistency among different learning methods and robustness to dataset normalization when using multiple datasets as the model input.


Subject(s)
Benchmarking , COVID-19 , Humans , Gene Expression Profiling , Machine Learning , Sequence Analysis, RNA/methods
12.
PLoS One ; 18(3): e0281370, 2023.
Article in English | MEDLINE | ID: covidwho-2267883

ABSTRACT

Understanding the spread of COVID-19 has been the subject of numerous studies, highlighting the significance of reliable epidemic models. Here, we introduce a novel epidemic model using a latent Hawkes process with temporal covariates for modelling the infections. Unlike other models, we model the reported cases via a probability distribution driven by the underlying Hawkes process. Modelling the infections via a Hawkes process allows us to estimate by whom an infected individual was infected. We propose a Kernel Density Particle Filter (KDPF) for inference of both latent cases and reproduction number and for predicting the new cases in the near future. The computational effort is proportional to the number of infections making it possible to use particle filter type algorithms, such as the KDPF. We demonstrate the performance of the proposed algorithm on synthetic data sets and COVID-19 reported cases in various local authorities in the UK, and benchmark our model to alternative approaches.


Subject(s)
COVID-19 , Epidemics , Humans , Algorithms , Benchmarking , Group Processes
13.
Ultrasonics ; 132: 106994, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2266168

ABSTRACT

Automated ultrasound imaging assessment of the effect of CoronaVirus disease 2019 (COVID-19) on lungs has been investigated in various studies using artificial intelligence-based (AI) methods. However, an extensive analysis of state-of-the-art Convolutional Neural Network-based (CNN) models for frame-level scoring, a comparative analysis of aggregation techniques for video-level scoring, together with a thorough evaluation of the capability of these methodologies to provide a clinically valuable prognostic-level score is yet missing within the literature. In addition to that, the impact on the analysis of the posterior probability assigned by the network to the predicted frames as well as the impact of temporal downsampling of LUS data are topics not yet extensively investigated. This paper takes on these challenges by providing a benchmark analysis of methods from frame to prognostic level. For frame-level scoring, state-of-the-art deep learning models are evaluated with additional analysis of best performing model in transfer-learning settings. A novel cross-correlation based aggregation technique is proposed for video and exam-level scoring. Results showed that ResNet-18, when trained from scratch, outperformed the existing methods with an F1-Score of 0.659. The proposed aggregation method resulted in 59.51%, 63.29%, and 84.90% agreement with clinicians at the video, exam, and prognostic levels, respectively; thus, demonstrating improved performances over the state of the art. It was also found that filtering frames based on the posterior probability shows higher impact on the LUS analysis in comparison to temporal downsampling. All of these analysis were conducted over the largest standardized and clinically validated LUS dataset from COVID-19 patients.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , Prognosis , Benchmarking , Ultrasonography
14.
PLoS One ; 18(3): e0282121, 2023.
Article in English | MEDLINE | ID: covidwho-2266058

ABSTRACT

The main objective of this study is to develop a robust deep learning-based framework to distinguish COVID-19, Community-Acquired Pneumonia (CAP), and Normal cases based on volumetric chest CT scans, which are acquired in different imaging centers using different scanners and technical settings. We demonstrated that while our proposed model is trained on a relatively small dataset acquired from only one imaging center using a specific scanning protocol, it performs well on heterogeneous test sets obtained by multiple scanners using different technical parameters. We also showed that the model can be updated via an unsupervised approach to cope with the data shift between the train and test sets and enhance the robustness of the model upon receiving a new external dataset from a different center. More specifically, we extracted the subset of the test images for which the model generated a confident prediction and used the extracted subset along with the training set to retrain and update the benchmark model (the model trained on the initial train set). Finally, we adopted an ensemble architecture to aggregate the predictions from multiple versions of the model. For initial training and development purposes, an in-house dataset of 171 COVID-19, 60 CAP, and 76 Normal cases was used, which contained volumetric CT scans acquired from one imaging center using a single scanning protocol and standard radiation dose. To evaluate the model, we collected four different test sets retrospectively to investigate the effects of the shifts in the data characteristics on the model's performance. Among the test cases, there were CT scans with similar characteristics as the train set as well as noisy low-dose and ultra-low-dose CT scans. In addition, some test CT scans were obtained from patients with a history of cardiovascular diseases or surgeries. This dataset is referred to as the "SPGC-COVID" dataset. The entire test dataset used in this study contains 51 COVID-19, 28 CAP, and 51 Normal cases. Experimental results indicate that our proposed framework performs well on all test sets achieving total accuracy of 96.15% (95%CI: [91.25-98.74]), COVID-19 sensitivity of 96.08% (95%CI: [86.54-99.5]), CAP sensitivity of 92.86% (95%CI: [76.50-99.19]), Normal sensitivity of 98.04% (95%CI: [89.55-99.95]) while the confidence intervals are obtained using the significance level of 0.05. The obtained AUC values (One class vs Others) are 0.993 (95%CI: [0.977-1]), 0.989 (95%CI: [0.962-1]), and 0.990 (95%CI: [0.971-1]) for COVID-19, CAP, and Normal classes, respectively. The experimental results also demonstrate the capability of the proposed unsupervised enhancement approach in improving the performance and robustness of the model when being evaluated on varied external test sets.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed , Cone-Beam Computed Tomography , Benchmarking
15.
EBioMedicine ; 89: 104482, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2257644

ABSTRACT

BACKGROUND: Since the US reported its first COVID-19 case on January 21, 2020, the science community has been applying various techniques to forecast incident cases and deaths. To date, providing an accurate and robust forecast at a high spatial resolution has proved challenging, even in the short term. METHOD: Here we present a novel multi-stage deep learning model to forecast the number of COVID-19 cases and deaths for each US state at a weekly level for a forecast horizon of 1-4 weeks. The model is heavily data driven, and relies on epidemiological, mobility, survey, climate, demographic, and SARS-CoV-2 variant frequencies data. We implement a rigorous and robust evaluation of our model-specifically we report on weekly performance over a one-year period based on multiple error metrics, and explicitly assess how our model performance varies over space, chronological time, and different outbreak phases. FINDINGS: The proposed model is shown to consistently outperform the CDC ensemble model for all evaluation metrics in multiple spatiotemporal settings, especially for the longer-term (3 and 4 weeks ahead) forecast horizon. Our case study also highlights the potential value of variant frequencies data for use in short-term forecasting to identify forthcoming surges driven by new variants. INTERPRETATION: Based on our findings, the proposed forecasting framework improves upon the available state-of-the-art forecasting tools currently used to support public health decision making with respect to COVID-19 risk. FUNDING: This work was funded the NSF Rapid Response Research (RAPID) grant Award ID 2108526 and the CDC Contract #75D30120C09570.


Subject(s)
COVID-19 , Deep Learning , Humans , United States , SARS-CoV-2 , Benchmarking , Forecasting
16.
Sci Rep ; 13(1): 3310, 2023 02 27.
Article in English | MEDLINE | ID: covidwho-2285285

ABSTRACT

Smart healthcare systems that make use of abundant health data can improve access to healthcare services, reduce medical costs and provide consistently high-quality patient care. Medical dialogue systems that generate medically appropriate and human-like conversations have been developed using various pre-trained language models and a large-scale medical knowledge base based on Unified Medical Language System (UMLS). However, most of the knowledge-grounded dialogue models only use local structure in the observed triples, which suffer from knowledge graph incompleteness and hence cannot incorporate any information from dialogue history while creating entity embeddings. As a result, the performance of such models decreases significantly. To address this problem, we propose a general method to embed the triples in each graph into large-scalable models and thereby generate clinically correct responses based on the conversation history using the recently recently released MedDialog(EN) dataset. Given a set of triples, we first mask the head entities from the triples overlapping with the patient's utterance and then compute the cross-entropy loss against the triples' respective tail entities while predicting the masked entity. This process results in a representation of the medical concepts from a graph capable of learning contextual information from dialogues, which ultimately aids in leading to the gold response. We also fine-tune the proposed Masked Entity Dialogue (MED) model on smaller corpora which contain dialogues focusing only on the Covid-19 disease named as the Covid Dataset. In addition, since UMLS and other existing medical graphs lack data-specific medical information, we re-curate and perform plausible augmentation of knowledge graphs using our newly created Medical Entity Prediction (MEP) model. Empirical results on the MedDialog(EN) and Covid Dataset demonstrate that our proposed model outperforms the state-of-the-art methods in terms of both automatic and human evaluation metrics.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Benchmarking , Communication , Entropy , Gold
17.
PLoS One ; 18(4): e0282621, 2023.
Article in English | MEDLINE | ID: covidwho-2282280

ABSTRACT

This work aims to compare deep learning models designed to predict daily number of cases and deaths caused by COVID-19 for 183 countries, using a daily basis time series, in addition to a feature augmentation strategy based on Discrete Wavelet Transform (DWT). The following deep learning architectures were compared using two different feature sets with and without DWT: (1) a homogeneous architecture containing multiple LSTM (Long-Short Term Memory) layers and (2) a hybrid architecture combining multiple CNN (Convolutional Neural Network) layers and multiple LSTM layers. Therefore, four deep learning models were evaluated: (1) LSTM, (2) CNN + LSTM, (3) DWT + LSTM and (4) DWT + CNN + LSTM. Their performances were quantitatively assessed using the metrics: Mean Absolute Error (MAE), Normalized Mean Squared Error (NMSE), Pearson R, and Factor of 2. The models were designed to predict the daily evolution of the two main epidemic variables up to 30 days ahead. After a fine-tuning procedure for hyperparameters optimization of each model, the results show a statistically significant difference between the models' performances both for the prediction of deaths and confirmed cases (p-value<0.001). Based on NMSE values, significant differences were observed between LSTM and CNN+LSTM, indicating that convolutional layers added to LSTM networks made the model more accurate. The use of wavelet coefficients as additional features (DWT+CNN+LSTM) achieved equivalent results to CNN+LSTM model, which demonstrates the potential of wavelets application for optimizing models, since this allows training with a smaller time series data.


Subject(s)
COVID-19 , Epidemics , Humans , Wavelet Analysis , Benchmarking , Neural Networks, Computer
18.
J Public Health Manag Pract ; 29(3): E69-E78, 2023.
Article in English | MEDLINE | ID: covidwho-2251685

ABSTRACT

CONTEXT: The COVID-19 pandemic made the long-standing need for a national uniform financial reporting standard for governmental public health agencies clear, as little information was available to quantify state and local public health agencies' financial needs during the pandemic response. Such a uniform system would also inform resource allocation to underresourced communities and for specific services, while filling other gaps in practice, research, and policy making. This article describes lessons learned and recommendations for ensuring broad adoption of a national Uniform Chart of Accounts (UCOA) for public health departments. PROGRAM: Leveraging previous efforts, the UCOA for public health systems was developed through collaboration with public health leaders. The UCOA allows state and local public health agencies to report spending on activities and funding sources, along with practice-defined program areas and capabilities. IMPLEMENTATION: To date, 78 jurisdictions have utilized the UCOA to crosswalk financial information at the program level, enabling comparisons with peers. EVALUATION: Jurisdictions participating in the UCOA report perceptions of substantial up-front time investment to crosswalk their charts of accounts to the UCOA standard but derive a sense of valuable potential for benchmarking against peers, ability to engage in resource allocation, use of data for accountability, and general net positive value of engagement with the UCOA. IMPLICATIONS FOR POLICY AND PRACTICE: The UCOA is considered a need among practice partners. Implementing the UCOA at scale will require government involvement, a reporting requirement and/or incentives, technical assistance, financial support for agencies to participate, and a means of visualizing the data.


Subject(s)
COVID-19 , Pandemics , Humans , Pandemics/prevention & control , COVID-19/epidemiology , Public Health Practice , Public Health , Benchmarking
19.
Sensors (Basel) ; 23(4)2023 Feb 05.
Article in English | MEDLINE | ID: covidwho-2249331

ABSTRACT

Monkeypox disease is caused by a virus that causes lesions on the skin and has been observed on the African continent in the past years. The fatal consequences caused by virus infections after the COVID pandemic have caused fear and panic among the public. As a result of COVID reaching the pandemic dimension, the development and implementation of rapid detection methods have become important. In this context, our study aims to detect monkeypox disease in case of a possible pandemic through skin lesions with deep-learning methods in a fast and safe way. Deep-learning methods were supported with transfer learning tools and hyperparameter optimization was provided. In the CNN structure, a hybrid function learning model was developed by customizing the transfer learning model together with hyperparameters. Implemented on the custom model MobileNetV3-s, EfficientNetV2, ResNET50, Vgg19, DenseNet121, and Xception models. In our study, AUC, accuracy, recall, loss, and F1-score metrics were used for evaluation and comparison. The optimized hybrid MobileNetV3-s model achieved the best score, with an average F1-score of 0.98, AUC of 0.99, accuracy of 0.96, and recall of 0.97. In this study, convolutional neural networks were used in conjunction with optimization of hyperparameters and a customized hybrid function transfer learning model to achieve striking results when a custom CNN model was developed. The custom CNN model design we have proposed is proof of how successfully and quickly the deep learning methods can achieve results in classification and discrimination.


Subject(s)
COVID-19 , Monkeypox , Humans , COVID-19/diagnosis , Benchmarking , Culture , Machine Learning
20.
PLoS One ; 18(3): e0282608, 2023.
Article in English | MEDLINE | ID: covidwho-2248524

ABSTRACT

COVID-19 is highly infectious and causes acute respiratory disease. Machine learning (ML) and deep learning (DL) models are vital in detecting disease from computerized chest tomography (CT) scans. The DL models outperformed the ML models. For COVID-19 detection from CT scan images, DL models are used as end-to-end models. Thus, the performance of the model is evaluated for the quality of the extracted feature and classification accuracy. There are four contributions included in this work. First, this research is motivated by studying the quality of the extracted feature from the DL by feeding these extracted to an ML model. In other words, we proposed comparing the end-to-end DL model performance against the approach of using DL for feature extraction and ML for the classification of COVID-19 CT scan images. Second, we proposed studying the effect of fusing extracted features from image descriptors, e.g., Scale-Invariant Feature Transform (SIFT), with extracted features from DL models. Third, we proposed a new Convolutional Neural Network (CNN) to be trained from scratch and then compared to the deep transfer learning on the same classification problem. Finally, we studied the performance gap between classic ML models against ensemble learning models. The proposed framework is evaluated using a CT dataset, where the obtained results are evaluated using five different metrics The obtained results revealed that using the proposed CNN model is better than using the well-known DL model for the purpose of feature extraction. Moreover, using a DL model for feature extraction and an ML model for the classification task achieved better results in comparison to using an end-to-end DL model for detecting COVID-19 CT scan images. Of note, the accuracy rate of the former method improved by using ensemble learning models instead of the classic ML models. The proposed method achieved the best accuracy rate of 99.39%.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , Thorax , Benchmarking , Neural Networks, Computer , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL